Unter Vorbehalt der Freigabe durch den Unterausschuss für Berufliche Bildung

Entwurf (Stand: 13.05.2011)

RAHMENLEHRPLAN

für den Ausbildungsberuf

Technischer Produktdesigner/ Technische Produktdesignerin

(Beschluss der Kultusministerkonferenz vom ...)

Teil I Vorbemerkungen

Dieser Rahmenlehrplan für den berufsbezogenen Unterricht der Berufsschule ist durch die Ständige Konferenz der Kultusminister der Länder beschlossen worden.

Der Rahmenlehrplan ist mit der entsprechenden Ausbildungsordnung des Bundes (erlassen vom Bundesministerium für Wirtschaft und Technologie oder dem sonst zuständigen Fachministerium im Einvernehmen mit dem Bundesministerium für Bildung und Forschung) abgestimmt.

Der Rahmenlehrplan baut grundsätzlich auf dem Hauptschulabschluss auf und beschreibt Mindestanforderungen.

Auf der Grundlage der Ausbildungsordnung und des Rahmenlehrplans, die Ziele und Inhalte der Berufsausbildung regeln, werden die Abschlussqualifikation in einem anerkannten Ausbildungsberuf sowie - in Verbindung mit Unterricht in weiteren Fächern - der Abschluss der Berufsschule vermittelt. Damit werden wesentliche Voraussetzungen für eine qualifizierte Beschäftigung sowie für den Eintritt in schulische und berufliche Fort- und Weiterbildungsgänge geschaffen.

Der Rahmenlehrplan enthält keine methodischen Festlegungen für den Unterricht. Bei der Unterrichtsgestaltung sollen jedoch Unterrichtsmethoden, mit denen Handlungskompetenz unmittelbar gefördert wird, besonders berücksichtigt werden. Selbstständiges und verantwortungsbewusstes Denken und Handeln als übergreifendes Ziel der Ausbildung muss Teil des didaktisch-methodischen Gesamtkonzepts sein.

Die Länder übernehmen den Rahmenlehrplan unmittelbar oder setzen ihn in eigene Lehrpläne um. Im zweiten Fall achten sie darauf, dass das im Rahmenlehrplan erzielte Ergebnis der fachlichen und zeitlichen Abstimmung mit der jeweiligen Ausbildungsordnung erhalten bleibt.

Teil II Bildungsauftrag der Berufsschule

Die Berufsschule und die Ausbildungsbetriebe erfüllen in der dualen Berufsausbildung einen gemeinsamen Bildungsauftrag.

Die Berufsschule ist dabei ein eigenständiger Lernort. Sie arbeitet als gleichberechtigter Partner mit den anderen an der Berufsausbildung Beteiligten zusammen. Sie hat die Aufgabe, den Schülern und Schülerinnen berufliche und allgemeine Lerninhalte unter besonderer Berücksichtigung der Anforderungen der Berufsausbildung zu vermitteln.

Die Berufsschule hat eine berufliche Grund- und Fachbildung zum Ziel und erweitert die vorher erworbene allgemeine Bildung. Damit will sie zur Erfüllung der Aufgaben im Beruf sowie zur Mitgestaltung der Arbeitswelt und Gesellschaft in sozialer und ökologischer Verantwortung befähigen. Sie richtet sich dabei nach den für die Berufsschule geltenden Regelungen der Schulgesetze der Länder. Insbesondere der berufsbezogene Unterricht orientiert sich außerdem an den für jeden staatlich anerkannten Ausbildungsberuf bundeseinheitlich erlassenen Ordnungsmitteln:

- Rahmenlehrplan der Ständigen Konferenz der Kultusminister der Länder
- Verordnung über die Berufsausbildung (Ausbildungsordnung) des Bundes für die betriebliche Ausbildung.

Nach der Rahmenvereinbarung über die Berufsschule (Beschluss der Kultusministerkonferenz vom 15.03.1991) hat die Berufsschule zum Ziel,

- "- eine Berufsfähigkeit zu vermitteln, die Fachkompetenz mit allgemeinen Fähigkeiten humaner und sozialer Art verbindet;
- berufliche Flexibilität und Mobilität zur Bewältigung der sich wandelnden Anforderungen in Arbeitswelt und Gesellschaft auch im Hinblick auf das Zusammenwachsen Europas zu entwickeln:
- die Bereitschaft zur beruflichen Fort- und Weiterbildung zu wecken;
- die Fähigkeit und Bereitschaft zu fördern, bei der individuellen Lebensgestaltung und im öffentlichen Leben verantwortungsbewusst zu handeln."

Zur Erreichung dieser Ziele muss die Berufsschule

- den Unterricht an einer für ihre Aufgabe spezifischen Pädagogik ausrichten, die Handlungsorientierung betont;
- unter Berücksichtigung notwendiger beruflicher Spezialisierung berufs- und berufsfeld- übergreifende Qualifikationen vermitteln;
- ein differenziertes und flexibles Bildungsangebot gewährleisten, um unterschiedlichen Fähigkeiten und Begabungen sowie den jeweiligen Erfordernissen der Arbeitswelt und Gesellschaft gerecht zu werden;
- Einblicke in unterschiedliche Formen von Beschäftigung einschließlich unternehmerischer Selbstständigkeit vermitteln, um eine selbstverantwortliche Berufs- und Lebensplanung zu unterstützen;
- im Rahmen ihrer Möglichkeiten Behinderte und Benachteiligte umfassend stützen und fördern:

- auf die mit Berufsausübung und privater Lebensführung verbundenen Umweltbedrohungen und Unfallgefahren hinweisen und Möglichkeiten zu ihrer Vermeidung bzw. Verminderung aufzeigen.

Die Berufsschule soll darüber hinaus im allgemeinen Unterricht und, soweit es im Rahmen des berufsbezogenen Unterrichts möglich ist, auf Kernprobleme unserer Zeit wie zum Beispiel

- Arbeit und Arbeitslosigkeit,
- friedliches Zusammenleben von Menschen, Völkern und Kulturen in einer Welt unter Wahrung kultureller Identität,
- Erhaltung der natürlichen Lebensgrundlage sowie
- Gewährleistung der Menschenrechte

eingehen.

Die aufgeführten Ziele sind auf die Entwicklung von **Handlungskompetenz** gerichtet. Diese wird hier verstanden als die Bereitschaft und Befähigung des Einzelnen, sich in beruflichen, gesellschaftlichen und privaten Situationen sachgerecht durchdacht sowie individuell und sozial verantwortlich zu verhalten. Handlungskompetenz entfaltet sich in den Dimensionen von Fachkompetenz, Humankompetenz und Sozialkompetenz.

Fachkompetenz bezeichnet die Bereitschaft und Befähigung, auf der Grundlage fachlichen Wissens und Könnens Aufgaben und Probleme zielorientiert, sachgerecht, methodengeleitet und selbstständig zu lösen und das Ergebnis zu beurteilen.

Humankompetenz bezeichnet die Bereitschaft und Befähigung, als individuelle Persönlichkeit die Entwicklungschancen, Anforderungen und Einschränkungen in Familie, Beruf und öffentlichem Leben zu klären, zu durchdenken und zu beurteilen, eigene Begabungen zu entfalten sowie Lebenspläne zu fassen und fortzuentwickeln. Sie umfasst Eigenschaften wie Selbstständigkeit, Kritikfähigkeit, Selbstvertrauen, Zuverlässigkeit, Verantwortungs- und Pflichtbewusstsein. Zu ihr gehören insbesondere auch die Entwicklung durchdachter Wertvorstellungen und die selbstbestimmte Bindung an Werte.

Sozialkompetenz bezeichnet die Bereitschaft und Befähigung, soziale Beziehungen zu leben und zu gestalten, Zuwendungen und Spannungen zu erfassen und zu verstehen sowie sich mit Anderen rational und verantwortungsbewusst auseinander zu setzen und zu verständigen. Hierzu gehört insbesondere auch die Entwicklung sozialer Verantwortung und Solidarität.

Bestandteil sowohl von Fachkompetenz als auch von Humankompetenz als auch von Sozial-kompetenz sind Methodenkompetenz, kommunikative Kompetenz und Lernkompetenz.

Methodenkompetenz bezeichnet die Bereitschaft und Befähigung zu zielgerichtetem, planmäßigem Vorgehen bei der Bearbeitung von Aufgaben und Problemen (zum Beispiel bei der Planung der Arbeitsschritte).

Kommunikative Kompetenz meint die Bereitschaft und Befähigung, kommunikative Situationen zu verstehen und zu gestalten. Hierzu gehört es, eigene Absichten und Bedürfnisse sowie die der Partner wahrzunehmen, zu verstehen und darzustellen.

Lernkompetenz ist die Bereitschaft und Befähigung, Informationen über Sachverhalte und Zusammenhänge selbstständig und gemeinsam mit Anderen zu verstehen, auszuwerten und in gedankliche Strukturen einzuordnen. Zur Lernkompetenz gehört insbesondere auch die Fähigkeit und Bereitschaft, im Beruf und über den Berufsbereich hinaus Lerntechniken und Lernstrategien zu entwickeln und diese für lebenslanges Lernen zu nutzen.

Teil III Didaktische Grundsätze

Die Zielsetzung der Berufsausbildung erfordert es, den Unterricht an einer auf die Aufgaben der Berufsschule zugeschnittenen Pädagogik auszurichten, die Handlungsorientierung betont und junge Menschen zu selbstständigem Planen, Durchführen und Beurteilen von Arbeitsaufgaben im Rahmen ihrer Berufstätigkeit befähigt.

Lernen in der Berufsschule vollzieht sich grundsätzlich in Beziehung auf konkretes, berufliches Handeln sowie in vielfältigen gedanklichen Operationen, auch gedanklichem Nachvollziehen von Handlungen Anderer. Dieses Lernen ist vor allem an die Reflexion der Vollzüge des Handelns (des Handlungsplans, des Ablaufs, der Ergebnisse) gebunden. Mit dieser gedanklichen Durchdringung beruflicher Arbeit werden die Voraussetzungen für das Lernen in und aus der Arbeit geschaffen. Dies bedeutet für den Rahmenlehrplan, dass das Ziel und die Auswahl der Inhalte berufsbezogen erfolgen.

Auf der Grundlage lerntheoretischer und didaktischer Erkenntnisse werden in einem pragmatischen Ansatz für die Gestaltung handlungsorientierten Unterrichts folgende Orientierungspunkte genannt:

- Didaktische Bezugspunkte sind Situationen, die für die Berufsausübung bedeutsam sind (Lernen für Handeln).
- Den Ausgangspunkt des Lernens bilden Handlungen, möglichst selbst ausgeführt oder aber gedanklich nachvollzogen (Lernen durch Handeln).
- Handlungen müssen von den Lernenden möglichst selbstständig geplant, durchgeführt, überprüft, gegebenenfalls korrigiert und schließlich bewertet werden.
- Handlungen sollten ein ganzheitliches Erfassen der beruflichen Wirklichkeit fördern, zum Beispiel technische, sicherheitstechnische, ökonomische, rechtliche, ökologische, soziale Aspekte einbeziehen.
- Handlungen müssen in die Erfahrungen der Lernenden integriert und in Bezug auf ihre gesellschaftlichen Auswirkungen reflektiert werden.
- Handlungen sollen auch soziale Prozesse, zum Beispiel der Interessenerklärung oder der Konfliktbewältigung, sowie unterschiedliche Perspektiven der Berufs- und Lebensplanung einbeziehen.

Handlungsorientierter Unterricht ist ein didaktisches Konzept, das fach- und handlungssystematische Strukturen miteinander verschränkt. Es lässt sich durch unterschiedliche Unterrichtsmethoden verwirklichen.

Das Unterrichtsangebot der Berufsschule richtet sich an Jugendliche und Erwachsene, die sich nach Vorbildung, kulturellem Hintergrund und Erfahrungen aus den Ausbildungsbetrieben unterscheiden. Die Berufsschule kann ihren Bildungsauftrag nur erfüllen, wenn sie diese Unterschiede beachtet und Schüler und Schülerinnen - auch benachteiligte oder besonders begabte - ihren individuellen Möglichkeiten entsprechend fördert.

Teil IV Berufsbezogene Vorbemerkungen

Der vorliegende Rahmenlehrplan für die Berufsausbildung zum Technischen Produktdesigner/zur Technischen Produktdesignerin ist mit der Verordnung über die Berufsausbildung zum Technischen Produktdesigner/zur Technischen Produktdesignerin sowie zum Technischen Systemplaner/zur Technischen Systemplanerin vom ... (BGBl. I S. ...) abgestimmt.

Der Rahmenlehrplan für die Ausbildungsberuf zum Technischen Zeichner/ zur Technischen Zeichnerin (Beschluss der Kultusministerkonferenz vom 15.02.1994) wird durch den vorliegenden Rahmenlehrplan aufgehoben.

Für den Prüfungsbereich Wirtschafts- und Sozialkunde wesentlicher Lehrstoff der Berufsschule wird auf der Grundlage der "Elemente für den Unterricht der Berufsschule im Bereich Wirtschafts- und Sozialkunde gewerblich-technischer Ausbildungsberufe" (Beschluss der Kultusministerkonferenz vom 07.05.2008) vermittelt.

Technische Produktdesignerinnen und Technische Produktdesigner erstellen und modifizieren 3D-Datensätze und Dokumentationen für Bauteile und Baugruppen auf der Grundlage von technischen und gestalterischen Vorgaben. Sie berücksichtigen dabei Fertigungsverfahren und Werkstoffeigenschaften, planen und koordinieren Arbeitsabläufe und Konstruktionsprozesse, kontrollieren und beurteilen ihre Arbeitsergebnisse. Somit unterstützen sie den gesamten Produktentwicklungsprozess. Hierbei setzen Sie sich auch mit vorgegebenen Gestaltelementen wie z. B. Form, Farbe und Material auseinander.

Der Rahmenlehrplan geht in Anlehnung an das beschriebene Berufsprofil von folgenden Kompetenzen aus:

Die Schülerinnen und Schüler

- planen und begleiten Produktentwicklungsprozesse
- erstellen und modifizieren 3D-Datensätze für Bauteile und Baugruppen
- konstruieren Bauteile mit 3D-CAD-Systemen unter Berücksichtigung von Werkstoffeigenschaften und Fertigungsverfahren
- erstellen virtuelle Baugruppen unter Berücksichtigung von Fügeverfahren und Montagetechniken
- berücksichtigen Gestaltungsvorgaben für Bauteilformen
- entwickeln zielführende Modellierungsstrategien und wenden diese an
- erstellen aus Datensätzen technische Dokumente
- erzeugen prozesskompatible Datensätze unter Berücksichtigung von Schnittstellen
- wenden Normen und Richtlinien zur Sicherung von Prozess- und Produktqualität an
- ermitteln und berechnen mechanische und physikalische Größen
- visualisieren und präsentieren Arbeitsergebnisse
- nutzen Kommunikationssysteme zur Beschaffung von Informationen
- planen Projekte und führen diese kundenorientiert durch
- berücksichtigen Methoden des Projekt- und Qualitätsmanagements

Die Vermittlung von fremdsprachlichen Qualifikationen gemäß der Ausbildungsordnung zur Entwicklung entsprechender Kommunikationsfähigkeit ist mit 40 Stunden in die Lernfelder integriert. Darüber hinaus können 80 Stunden berufsspezifische Fremdsprachenvermittlung als freiwillige Ergänzung der Länder angeboten werden.

Sicherheitstechnische, ökonomische und ökologische Aspekte sind in den Lernfeldern integrativ zu vermitteln.

Einschlägige Normen und Rechtsvorschriften sind auch dort zugrunde zu legen, wo sie nicht explizit erwähnt werden. Die für die einzelnen Lernfelder formulierten Ziele sind maßgebend

für die Unterrichtsgestaltung und stellen zusammen mit den ergänzenden Inhalten Mindestanforderungen dar.

In den Lernfeldern 13 der Fachrichtungen Entwicklung, Konstruktion und Dokumentation sowie Gestaltung, Entwicklung und Konstruktion sollen die Schülerinnen und Schüler einen berufstypischen Kundenauftrag vollständig bearbeiten und dabei die während der Ausbildung erworbenen Kompetenzen anwenden. Dabei können insbesondere die Einsatzbereiche berücksichtigt werden, in denen die jeweiligen Ausbildungsbetriebe ihren Schwerpunkt haben.

Der Rahmenlehrplan stimmt hinsichtlich der ersten vier Lernfelder mit dem Rahmenlehrplan für den Ausbildungsberuf Technischer Systemplaner/ Technische Systemplanerin überein. Eine gemeinsame Beschulung mit dem Ausbildungsberuf Technischer Systemplaner/ Technische Systemplanerin ist daher im ersten Ausbildungsjahr möglich.

Die Inhalte der Lernfelder 5-8 stimmen für die Fachrichtungen Entwicklung, Konstruktion und Dokumentation sowie Gestaltung, Entwicklung und Konstruktion überein. Somit ist eine gemeinsame Beschulung von Schülerinnen und Schülern beider Fachrichtungen auch im zweiten Ausbildungsjahr möglich.

Teil V Lernfelder

Übersicht über die Lernfelder für den Ausbildungsberuf Technischer Produktdesigner/Technische Produktdesignerin

Lernfelder		Zeitrichtwerte in Unterrichtstunden			
Nr.		1. Jahr	2. Jahr	3. Jahr	4. Jahr
1	Technische Systeme analysieren und erfassen	60			
2	Bauteile und Baugruppen nach Vorgabe computerunterstützt erstellen	80			
3	Auswirkungen ausgewählter Fertigungsverfahren und Werkstoffe auf die Bauteilkonstruktion berücksichtigen	80			
4	Aufträge kundenorientiert ausführen	60			
5	Bauteile aus metallischen Werkstoffen unter Berücksichtigung von Umformverfahren im Kontext von Baugruppen entwickeln		60		
6	Bauteile aus Kunststoffen unter Berücksichtigung von Ur- und Umformverfahren im Kontext von Baugruppen entwickeln		80		
7	Bauteile unter Berücksichtigung von trennenden Fertigungsverfahren im Kontext von Baugruppen entwickeln		80		
8	Bauteile aus metallischen Werkstoffen unter Berücksichtigung von Urformverfahren im Kontext von Baugruppen entwickeln		60		
Fach	richtung Entwicklung, Konstruktion und Dokum	entation			
9	3D-Datensätze von Baugruppen unter Berücksichtigung von Fügeverfahren und Montagetechniken erstellen und modifizieren			100	
10	Datensätze und Dokumentationen für technische Systeme der automatisierten Fertigung erstellen und modifizieren			60	
11	3D-Datensätze komplexer Baugruppen unter Verwendung von Maschinenelementen sowie Kaufteilen erstellen und modifizieren			120	
12	3D-Datensätze von Bauteilen und Baugruppen nach gestaltungstechnischen Vorgaben erstellen und modifizieren				60
13	Produktentwicklung kundenorientiert ausführen				80

	Fachrichtung Gestaltung, Entwicklung und	Konstrul	ktion		
9	3D-Datensätze von Baugruppen unter Berücksichtigung von Fügeverfahren und Montagetechniken erstellen und modifizieren			100	
10	3D-Datensätze von Bauteilen nach Designvorgaben erstellen und modifizieren			120	
11	3D-Datensätze von Baugruppen unter Verwendung von Normteilen sowie Kaufteilen erstellen und modifizieren			60	
12	3D-Datensätze von komplex aufgebauten Baugruppen aus Designideen erstellen und modifizieren				60
13	Produktentwicklung kundenorientiert ausführen				80
	Summen: insgesamt 980 Stunden	280	280	280	140

Lernfeld 1: Technische Systeme analysieren und erfassen 1. Ausbildungsjahr Zeitrichtwert: 60 Stunden

Ziel:

Die Schülerinnen und Schüler erfassen und analysieren technische Bauteile und Systeme. Sie werten technische Dokumentationen auch in englischer Sprache aus und beschreiben funktionale Zusammenhänge technischer Systeme unter Verwendung von Fachbegriffen. Dazu führen sie anwendungsbezogene Berechnungen durch, fertigen technische Freihandskizzen an und erstellen notwendige technische Dokumente.

Sie wenden Möglichkeiten technischer Dokumentationen insbesondere der normgerechten Darstellung an.

Inhalte:

räumliche Darstellung, Darstellung in Ansichten Informationsbeschaffung: Tabellenbuch, Kataloge, Internet

Stücklisten, Normteile Bemaßung, Toleranzen

Grundbegriffe der Elektrotechnik

Berechnungen: Länge, Fläche, Volumen, Winkel, Masse, Dichte

Lernfeld 2: Bauteile und Baugruppen nach Vorgabe computerunterstützt erstellen 1. Ausbildungsjahr Zeitrichtwert: 80 Stunden

Ziel:

Die Schülerinnen und Schüler erstellen Datensätze für Bauteile nach Handskizzen und Zeichnungen.

Dazu erzeugen und verändern sie Bauteile computerunterstützt. Hierbei erkennen und berücksichtigen sie insbesondere geometrische Zusammenhänge.

Sie erstellen einfache Baugruppen unter Berücksichtigung lösbarer Verbindungen und reflektieren deren Montierbarkeit. Sie prüfen ihre Arbeitsergebnisse, führen Änderungen an den Bauteilen durch und erzeugen notwendige technische Dokumente.

Die Schülerinnen und Schüler pflegen und sichern Daten in geeigneten Strukturen und beachten dabei Vorschriften des Datenschutzes. Sie setzen sich mit Gefahren des Datenmissbrauchs auseinander und reflektieren rechtliche sowie ökonomische Folgen.

Inhalte:

Ansichten, Schnitte, Einzelheiten Toleranzangaben Datensatzstrukturierung Kauf- und Normteile aus Bibliotheken Stücklisten

computergestützte Berechnungen: Flächen, Volumen, Massen, Schwerpunkte

Datenformate

Lernfeld 3: Auswirkungen ausgewählter Fertigungsverfahren und Werkstoffe auf die Bauteilkonstruktion berücksichtigen

1. Ausbildungsjahr Zeitrichtwert: 80 Stunden

Ziel:

Die Schülerinnen und Schüler konstruieren Bauteile und informieren sich dazu auftragsbezogen über Fertigungsverfahren. Dabei berücksichtigen sie Aufbau, Eigenschaften und Einsatzmöglichkeiten der Werkstoffe.

Sie werten Informationen über branchentypische Fertigungsverfahren und Werkstoffe aus, strukturieren diese, führen erforderliche Berechnungen durch und erkennen den Einfluss auf die Bauteilkonstruktion.

Die Schülerinnen und Schüler dokumentieren und präsentieren ihre Arbeiten und setzen bei der Erstellung auch Standardsoftware ein. Sie reflektieren und beurteilen ihre Präsentationen auch unter gestalterischen Gesichtspunkten.

Inhalte:

mechanische und physikalische Werkstoffeigenschaften Werkstoffnormung
Oberflächenbeschaffenheit, Oberflächenkennzeichnung
Längen- und Volumenausdehnung
Hauptgruppen der Fertigungsverfahren
Urheberrecht, Quellennachweis

Lernfeld 4: Aufträge kundenorientiert ausführen

1. Ausbildungsjahr Zeitrichtwert: 60 Stunden

Ziel:

Die Schülerinnen und Schüler bearbeiten einen Kundenauftrag.

Dazu erfassen und analysieren sie grundlegende betriebliche Abläufe und Prozesse, reflektieren eigene Erfahrungen und berücksichtigen diese bei der Auftragsausführung. Sie beschaffen sich projektbezogene Informationen auch in englischer Sprache.

Bei der Auftragsabwicklung arbeiten die Schülerinnen und Schüler im Team und wenden geeignete Arbeitsstrategien an.

Sie stellen ihre Lösungsvarianten dar, vergleichen und bewerten diese.

Nach Abschluss des Kundenauftrags reflektieren die Schülerinnen und Schüler die Prozessabläufe.

Inhalte:

Produktentstehungsprozess Lastenheft, Pflichtenheft Kreativtechniken qualitätssichernde Maßnahmen Zeitplanung Kostenmanagement

2. Ausbildungsjahr

Zeitrichtwert: 60 Stunden

Lernfeld 5: Bauteile aus metallischen Werkstoffen unter Berücksichtigung von Umform-

verfahren im Kontext von Baugruppen

entwickeln

Ziel:

Die Schülerinnen und Schüler berücksichtigen bei Entwicklungsprozessen metallischer Bauteile Gestaltungsregeln für Umformverfahren und wenden diese bei der Bauteilgestaltung an.

Sie informieren sich über Umformverfahren und deren Wirtschaftlichkeit. Sie vergleichen die Eigenschaften einsetzbarer Werkstoffe und berücksichtigen deren Eigenschaftsänderungen. Dabei beachten sie ökologische und ökonomische Aspekte. Sie führen anwendungsbezogene Berechnungen durch.

Die Schülerinnen und Schüler berücksichtigen die auftragsspezifischen Anforderungen und planen ihre Vorgehensweise. Sie erstellen 3D-Datensätze, prüfen diese und dokumentieren die Ergebnisse.

Inhalte:

Biegen, Tiefziehen Stahl, NE-Metalle und deren Legierungen, Werkstoffnormung Biegerohlängen Recycling

2. Ausbildungsjahr

Zeitrichtwert: 80 Stunden

Lernfeld 6: Bauteile aus Kunststoffen unter Berücksichtigung von Ur- und Umform-

verfahren im Kontext von Baugruppen

entwickeln

Ziel:

Die Schülerinnen und Schüler berücksichtigen bei Entwicklungsprozessen Gestaltungsregeln für Bauteile aus Kunststoffen in Abhängigkeit von Werkstoffen und Fertigungsverfahren. Sie beachten die auftragsspezifischen Anforderungen und planen ihre Vorgehensweise.

Sie informieren sich über die Möglichkeiten der Herstellung, beurteilen diese in Bezug auf Verwendung und Wirtschaftlichkeit. Sie vergleichen die Eigenschaften einzusetzender Werkstoffe auch unter Berücksichtigung der Umweltverträglichkeit und Verfügbarkeit. Dazu beschaffen sie sich auftragsbezogene Informationen aus technischen Unterlagen zur Erstellung und Änderung von Bauteilen.

Sie erstellen 3D-Datensätze, prüfen diese und dokumentieren ihre Ergebnisse.

Inhalte:

Thermoplaste, Duroplaste und Elastomere Spritzgießen, Vakuumthermoformen, Extrudieren, Blasformen, Faserverbundtechnik Rapid Prototyping Lernfeld 7: Bauteile unter Berücksichtigung von trennenden Fertigungsverfahren im Kontext von Baugruppen entwickeln

2. Ausbildungsjahr Zeitrichtwert: 80 Stunden

Ziel:

Die Schülerinnen und Schüler berücksichtigen bei Entwicklungsprozessen von Bauteilen Gestaltungsregeln für trennende, insbesondere spanende Fertigungsverfahren, und wenden diese bei der Bauteilgestaltung an. Sie informieren sich über trennende Fertigungsverfahren.

Im Kontext der Baugruppe und unter Berücksichtigung der Wirtschaftlichkeit leiten sie aus der Funktion eines Bauteiles die Anforderungen an die Form und Genauigkeit ab. Sie berücksichtigen die Eigenschaften der verwendeten Werk- und Hilfsstoffe. Sie verwenden auch englischsprachige Fachbegriffe für Bauteile, Werkstoffe und Verfahren. Sie informieren sich über CNC- und CAM-gerechte Datenbereitstellung und erstellen fertigungsgerechte Zeichnungsableitungen mit Maß-, Form- und Oberflächenangaben.

Inhalte:

Drehen, Fräsen, Bohren, Feinbearbeitung Stanzen, Schneiden, Erodieren

2. Ausbildungsjahr

Zeitrichtwert: 60 Stunden

Lernfeld 8: Bauteile aus metallischen Werkstoffen unter Berücksichtigung von Urformver-

fahren im Kontext von Baugruppen

entwickeln

Ziel:

Die Schülerinnen und Schüler berücksichtigen bei Entwicklungsprozessen metallischer Bauteile Gestaltungsregeln für Urformverfahren und wenden diese bei der Bauteilgestaltung an.

Sie informieren sich über Urformverfahren und deren Wirtschaftlichkeit. Sie vergleichen die Eigenschaften einsetzbarer Werkstoffe und berücksichtigen deren Eigenschaftsänderungen. Dabei beachten sie ökologische und ökonomische Aspekte. Sie führen anwendungsbezogene Berechnungen durch.

Die Schülerinnen und Schüler berücksichtigen die auftragsspezifischen Anforderungen und planen ihre Vorgehensweise. Sie erstellen 3D-Datensätze, prüfen diese und dokumentieren die Ergebnisse.

Inhalte:

Gießen, Sintern Gusseisen, Stahlguss, NE-Metalle und deren Legierungen, Werkstoffnormung Wärmedehnung Recycling

Fachrichtung Entwicklung, Konstruktion und Dokumentation

und Montagetechniken erstellen und

Lernfeld 9: 3D-Datensätze von Baugruppen unter EKD 3. Ausbildungsjahr Zeitrichtwert: 100 Stunden

modifizieren

Ziel:

Die Schülerinnen und Schüler erstellen und verändern Datensätze von Baugruppen unter Berücksichtigung füge- und montagetechnischer Anforderungen.

Sie erkennen für den Zusammenbau notwendige technische Beziehungen und ermitteln erforderliche Toleranzen.

Sie beschaffen sich Informationen über Fügetechniken und Montagestrategien und wählen geeignete aus.

Die Schülerinnen und Schüler entwickeln Strategien zur Positionierung der Bauteile im CAD-System.

Sie erstellen Baugruppen auch unter Verwendung von Normteil- und Bauteilbibliotheken.

Die Schülerinnen und Schüler ergänzen notwendige Bauteilinformationen und generieren Stücklisten. Sie leiten technische Dokumente ab.

Sie sichern ihre Datensätze nach betrieblichen Vorgaben.

Inhalte:

Funktionsanalyse

kraft-, form- und stoffschlüssige Verbindungen

Welle-Nabe-Verbindungen

Kollisionskontrollen

Form- und Lagetoleranzen, Passungen

Ansichten, Einzelheiten, Schnitte, Explosionsdarstellungen

Montage-, Demontagepläne

Berechnungen: Kräfte, Drehmomente, Flächenpressungen

Datenimport, -export

Lernfeld 10: Datensätze und Dokumentationen für technische Systeme der automatisierten Fertigung erstellen und modifizieren

3. Ausbildungsjahr Zeitrichtwert: 60 Stunden

Ziel:

Die Schülerinnen und Schüler analysieren technische Dokumentationen von Systemen der automatisierten Fertigung, insbesondere Schaltpläne pneumatischer und hydraulischer Steuerungen.

Sie informieren sich über Funktionszusammenhänge einfacher verbindungs- und speicherprogrammierter Steuerungen.

Im Kontext einer Baugruppe erstellen sie Schaltpläne, Zuordnungslisten und andere Dokumentationen für technische Systeme der automatisierten Fertigung nach Vorgaben. Dazu nutzen sie auch Herstellerunterlagen.

Inhalte:

Sensoren, Aktoren elektropneumatische und elektrohydraulische Funktionseinheiten Berechnungen: Kräfte, Drücke Darstellung von Funktionsabläufen

3. Ausbildungsjahr

Zeitrichtwert: 120 Stunden

Lernfeld 11: 3D - Datensätze von Baugruppen unter EKD Verwendung von Maschinenelementen

Verwendung von Maschinenelementen sowie Kaufteilen erstellen und modifi-

zieren

Ziel:

Die Schülerinnen und Schüler erstellen 3D- Datensätze von Baugruppen. Dabei verwenden sie auch Maschinenelemente sowie Kaufteile und berücksichtigen ökonomische sowie montagetechnische Aspekte.

Sie informieren sich über Methoden zur Konstruktion von Baugruppen und wählen auftragsbezogen geeignete aus.

Sie wählen notwendige Verfahren zur Änderung von Werkstoffeigenschaften und deren Prüfverfahren aus und dokumentieren ihre Ergebnisse.

Sie berücksichtigen Möglichkeiten der Anpassungs- und Variantenkonstruktion.

Sie beurteilen ihre Arbeitsergebnisse mit Methoden des Qualitätsmanagements.

Die Schülerinnen und Schüler wenden Möglichkeiten zur Kollisionskontrolle an, simulieren Einbau-, Bewegungs- und Montageabläufe und präsentieren diese.

Sie überprüfen die Dimensionierung von Bauteilen durch Festigkeitsberechnungen.

Sie leiten aus den Datensätzen der Baugruppen notwendige technische Dokumente ab.

Die Schülerinnen und Schüler sichern und archivieren die Daten der Bauteile und Baugruppen.

Inhalte:

Produktentwicklungsprozess

Konstruktionsmethoden: bottom up, top down

Lagerungen

Riemen-, Ketten-, Zahnradtriebe

Kupplungen

Wärmebehandlungsverfahren, Härteprüfverfahren

anwendungsbezogene Berechnungen:

Reibung, Zug-, Druck-, Scherbeanspruchung,

Übersetzungsverhältnis, Arbeit, Leistung, Wirkungsgrad, Geschwindigkeit

Produktdatenmanagement

Lernfeld 12 3D-Datensätze von Bauteilen und Bau-EKD gruppen nach gestaltungstechnischen Vorgaben erstellen und modifizieren 4. Ausbildungsjahr Zeitrichtwert: 60 Stunden

Ziel:

Die Schülerinnen und Schüler erstellen nach gestaltungstechnischen Vorgaben komplexe Bauteile und Baugruppen. Sie setzen die Vorgaben nach technischen, funktionalen, ergonomischen und ästhetischen Gesichtspunkten um und stellen diese in technischen Handskizzen dar.

Sie führen einen Variantenvergleich zur Auswahl des optimalen Lösungskonzepts durch und modellieren die Bauteile mit Funktionen der Flächen- und Volumenmodellierung.

Sie berücksichtigen gestalterische und ergonomische Anforderungen sowie die Wirkungen von Bauteilformen, Werkstoffen und Oberflächenstrukturen und übertragen die Ergebnisse auf die Modelle.

Die Schülerinnen und Schüler prüfen Datensätze auf Vollständigkeit, Genauigkeit und Herstellbarkeit. Sie bewerten Arbeitsergebnisse, dokumentieren und präsentieren diese mit Hilfe von Visualisierungstechniken.

Inhalte:

2D-, 3D-Kurven, Stetigkeit Flächenanalyse Strukturierung von Modellen Kriterien der Produktgestaltung Farben und Texturen als Gestaltungsmerkmale Lernfeld 13 **Produktentwicklung kundenorientiert** 4. Ausbildungsjahr Zeitrichtwert: 80 Stunden **EKD** ausführen

Ziel:

Die Schülerinnen und Schüler führen ein Projekt kundenorientiert aus. Dabei berücksichtigen sie Methoden des Projektmanagements und der Qualitätssicherung.

In Absprache mit den Kunden ermitteln sie die erforderlichen Anforderungen. Sie analysieren den zu leistenden Arbeitsaufwand, planen Termine und Arbeitsmittel. Sie legen die einzelnen Arbeitsschritte fest und verteilen diese.

Die Schülerinnen und Schüler koordinieren ihre Teamarbeit und dokumentieren diese in geeigneter Form.

Bei der Bauteilentwicklung berücksichtigen sie neben funktionalen auch ökonomische und ökologische Gesichtspunkte und vergleichen Lösungsvarianten. Sie führen Kundengespräche auch in englischer Sprache.

Im Produktentstehungsprozess berücksichtigen sie geeignete Fertigungsverfahren. Dabei beachten sie die Wirtschaftlichkeit der Verfahren. Sie beurteilen Eigenschaften und Verwendungsmöglichkeiten der einzusetzenden Werk- und Hilfsstoffe.

Die Schülerinnen und Schüler erstellen eine ausführliche Dokumentation des Projektes. Sie

präsentieren Arbeitsergebnisse und reflektieren diese.				
	Inhalte:			

Fachrichtung Gestaltung, Entwicklung und Konstruktion

Lernfeld 9: 3D-Datensätze von Baugruppen unter
GEK
Berücksichtigung von Fügeverfahren
und Montagetechniken erstellen und
modifizieren

3. Ausbildungsjahr
Zeitrichtwert: 100 Stunden

Ziel:

Die Schülerinnen und Schüler erstellen und verändern Datensätze von Baugruppen unter Berücksichtigung füge- und montagetechnischer Anforderungen.

Sie erkennen für den Zusammenbau notwendige technische Beziehungen und ermitteln erforderliche Toleranzen.

Sie beschaffen sich Informationen über Fügetechniken und Montagestrategien und wählen geeignete aus.

Die Schülerinnen und Schüler entwickeln Strategien zur Positionierung der Bauteile im CAD-System.

Sie erstellen Baugruppen auch unter Verwendung von Normteil- und Bauteilbibliotheken.

Die Schülerinnen und Schüler ergänzen notwendige Bauteilinformationen und generieren Stücklisten. Sie leiten technische Dokumente ab.

Sie sichern ihre Datensätze nach betrieblichen Vorgaben.

Inhalte:

Funktionsanalyse

Werkstoffe: Metalle, Kunststoffe, Verbundwerkstoffe, Glas, Papier, Pappe, Holz

kraft-, form- und stoffschlüssige Verbindungen

Clipverbindungen, Schnappverbindungen, Filmscharniere

integrierte oder differenzierte Bauweise

Kollisionskontrollen

Form- und Lagetoleranzen, Passungen

Ansichten, Einzelheiten, Schnitte, Explosionsdarstellungen

Datenimport, -export

Lernfeld 10: 3D-Datensätze von Bauteilen nach 3. Ausbildungsjahr GEK Designvorgaben erstellen und modifi- Zeitrichtwert: 120 Stunden

zieren

Ziel:

Die Schülerinnen und Schüler erstellen 3D-Datensätze nach Designvorgaben. Dazu informieren sie sich über das Produkt und führen notwendige Wettbewerbs- und Patentrecherchen auch in englischer Sprache durch.

Sie vertiefen die Handfertigkeit der Skizziertechnik.

Die Schülerinnen und Schüler wenden Modellierungsstrategien, insbesondere der Flächenmodellierung, für Bauteile im Baugruppenkontext an. Sie berücksichtigen gestalterisch-ökonomisch optimierte Montageaspekte.

Sie berücksichtigen ergonomische Anforderungen sowie die Wirkungen von Farbe, Haptik und Material in der Wahrnehmung.

Sie beurteilen ihre Arbeitsergebnisse.

Die Schülerinnen und Schüler sichern und archivieren die Daten der Bauteile und Baugruppen.

Inhalte:

Designvorgaben: formal-ästhetisch, konstruktiv-funktional, materialhaptisch

Produktgrafik

perspektivische Handskizzen

Kurven, Kurvenübergänge, Freiformflächen, Flächenanalyse

Flächen-, Volumen-, Hybridmodelle

Proportionen, Kontrast, Licht, Schatten, Perspektive, Farbe

Lernfeld 11: 3D-Datensätze von Baugruppen unter
GEK
Verwendung von Normteilen sowie
Kaufteilen erstellen und modifizieren
3. Ausbildungsjahr
Zeitrichtwert: 60 Stunden

Ziel:

Die Schülerinnen und Schüler erstellen 3D-Datensätze von Baugruppen. Dabei verwenden sie Normteile sowie Kaufteile und berücksichtigen ökonomische und montagetechnische Aspekte. Sie führen anwendungsbezogene Berechnungen durch.

Sie informieren sich über Methoden zur Konstruktion von Baugruppen und wählen auftragsbezogen geeignete aus.

Sie berücksichtigen Möglichkeiten der Anpassungs- und Variantenkonstruktion.

Die Schülerinnen und Schüler beurteilen ihre Arbeitsergebnisse mit Methoden des Qualitätsmanagements. Sie wenden Möglichkeiten zur Kollisionskontrolle an, simulieren Einbau-, Bewegungs- und Montageabläufe und präsentieren diese.

Die Schülerinnen und Schüler leiten aus den Datensätzen notwendige technische Dokumente ab.

Sie sichern und archivieren die Daten der Bauteile und Baugruppen.

Inhalte:

Konstruktionsmethoden: bottom up, top down

Führungen

Welle-Nabe-Verbindungen

Montage-, Demontagepläne

Reibung, Flächenpressung, Drehmoment

Produktdatenmanagement

Lernfeld 12: 3D-Datensätze von komplex aufgebau-GEK 4. Ausbildungsjahr ten Baugruppen aus Designideen erstel- Zeitrichtwert: 60 Stunden

len und modifizieren

Ziel:

Die Schülerinnen und Schüler erstellen aus Designideen komplexe Bauteile und Baugruppen. Anhand von produktsemantischen, ästhetischen, funktionalen und ergonomischen Aspekten entwickeln sie ein Designkonzept und stellen dieses in Handskizzen dar.

Sie führen einen Variantenvergleich zur Auswahl des optimalen Lösungskonzepts durch. Sie erkennen, beschreiben und berücksichtigen die Wirkungen von Bauteilformen, Werkstoffen und Oberflächenstrukturen.

Die Schülerinnen und Schüler führen Einbauuntersuchungen durch und prüfen ihre Datensätze auf Vollständigkeit, Genauigkeit und Herstellbarkeit.

Sie dokumentieren und präsentieren diese Ergebnisse auch in englischer Sprache. Dazu wenden sie geeignete Visualisierungstechniken an.

Inhalte:

Zielgruppendefinition Corporate Design fotorealistische Darstellung Lernfeld 13: Produktentwicklung kundenorientiert 4. Ausbildungsjahr GEK Zeitrichtwert: 80 Stunden

Ziel:

Die Schülerinnen und Schüler führen ein Projekt kundenorientiert aus. Dabei berücksichtigen sie Methoden des Projektmanagements und der Qualitätssicherung.

In Absprache mit den Kunden ermitteln sie die erforderlichen Anforderungen. Sie analysieren den zu leistenden Arbeitsaufwand, planen Termine und Arbeitsmittel. Sie legen die einzelnen Arbeitsschritte fest und verteilen diese.

Die Schülerinnen und Schüler koordinieren ihre Teamarbeit und dokumentieren diese in geeigneter Form.

Bei der Bauteilentwicklung berücksichtigen sie neben funktionalen auch ökonomische und ökologische Gesichtspunkte und vergleichen Lösungsvarianten. Sie führen Kundengespräche auch in englischer Sprache.

Im Produktentstehungsprozess berücksichtigen sie geeignete Fertigungsverfahren. Dabei beachten sie die Wirtschaftlichkeit der Verfahren. Sie beurteilen Eigenschaften und Verwendungsmöglichkeiten der einzusetzenden Werk- und Hilfsstoffe.

Die Schülerinnen und Schüler erstellen eine ausführliche Dokumentation des Projektes. Sie präsentieren Arbeitsergebnisse und reflektieren diese.

oräsentieren Arbeitsergebnisse und reflektieren diese.			
Inhalte:			